
SPINAL MANIPULATION

EFFECTS & EFFICACY

Definitions

- Efficacy Benefits of an intervention as tested under controlled experimental conditions, usually with a control group in a randomized clinical trial (RCT)
- Effects Benefits of an intervention as tested under "real world" conditions, often using quasi-experimental methods

Portney and Watkins 3rd edition

• Mechanical/Articular

Effects

- Neurophysiological
- Genetic
 - RNA expression
- Immunological
 - Enzyme activity
- Endocrine
 - Endorphin release
- Psychological
 - Manual contact, placebo

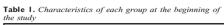
W.

HYPOTHESES:

Suggested Effects of Manipulation

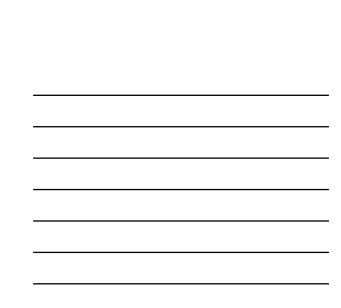
Mechanical/Articular:

- reduce a joint fixation
- capsule/muscle stretch
- tear adhesions/scars
 - capsule
 - ligament
 - · segmental muscle
- Increase ROM alter joint position
- release entrapment
 - meniscoid
 - synovial fold
 - capsule
- shift annular disc fragment
- relieve pressure on nervous system

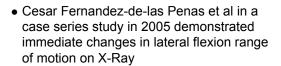


Mechanical Neck Pain-ROM

- Rachel Martinez-Segura et al in a RCT study in 2006 demonstrated an increased in cervical ROM and decreased pain after a single cervical high velocity, low amplitude manipulation (HVLA) in subjects presenting with mechanical neck pain
- Rachel Martinez-Segura et al, Journal of Manipulative and Physiological Therapeutics, Sept. 2006


AV.

Rachel Martinez-Segura et al, Journal of Manipulative and Physiological Therapeutics, Sept. 2006


	Control group	Experimental group	P
No. of subjects	37	34	
Sex (male/female)	13/24	13/21	7
			./
Age (mean \pm SD)	39 ± 10	35 ± 10	.2
Length of neck pain	4.5 ± 4.6	4 ± 3.4	.6
Neck pain at rest	5.5 ± 1.5	5.7 ± 1.5	.4
Cervical flexion	43 ± 9	45 ± 7	.2
Cervical extension	55 ± 7	57 ± 9	.2
Left lateral flexion	35 ± 7	37 ± 6	.2
Right lateral flexion	33 ± 6	34 ± 7	.4
Left rotation	56 ± 7	57 ± 10	.8
Right rotation	53 ± 6	55 ± 9	.3

Scores are expressed as means \pm SD.

able 2. Within pre-	post values		sizes (Cohe anipulative g		each group for	r each outc		re Il mobilizatio	n group	
	Pre-int	Post-int	Pre-post	P	Within-group Cohen's d	Pre-int	Post-int	Pre-post	P	Within-grou
Neck pain at rest	5.7 (1.5)	2.2 (1.5)	3.5 (1.2)	<,001	2.9	5.5 (1.7)	5.1 (1.9)	0,4 (0,6)	<.01	0.6
Cervical flexion	45 (7)	52 (7)	7 (5)	<.001	1.4	43 (9)	44 (9)	1.5 (2.5)	<.01	0.6
Cervical extension	57 (9)	65 (9)	8 (7)	<.001	1.2	55 (7)	56 (8)	1.4 (3.3)	<.05	0.4
Left lateral flexion	37 (6)	42 (6)	5 (4)	<.001	1.2	35 (7)	36 (6)	0.8 (1.5)	<.01	0.5
Right lateral flexion	34 (7)	39 (7)	5 (4)	<.001	1.2	33 (6)	33 (6)	0.8 (1.6)	<.01	0.5
Left rotation	57 (10)	66 (9)	9 (5)	<.001	1.8	56 (7)	56 (6)	0.3 (0.8)	NS	0.4
Right rotation	55 (9)	65 (8)	10 (5)	<.001	2	53 (6)	53 (6)	0.4 (1.5)	NS	0.3

Mechanical Neck Pain

C. Fernandez-de-las Penas et al International Journal of Osteopathic Medicine 8 (2005)

Table 2
Pre-post-radiological measurements of each patient
Patient Inter-vertebral motion at the dysfurctional segment measured on controllateral side flexion to the hypomolste.

The resulting Post-treatment Imperovement

| Vertebral | Verteb

Mechanical Neck Pain

- Pilar Mansilla-Ferragut et al demonstrated immediate effects on Active Mouth opening and pressure pain sensitivity in women with mechanical neck pain
- Pilar Mansilla-Ferragut et al, Journal of Manipulative and Physiological Therapeutics, February 2009

Pilar Mansilla-Ferragut et al, Journal of Manipulative and Physiological Therapeutics, February 2009

Table 1. Pre-post and within interventi	ion differences for both groups
---	---------------------------------

Active mouth opening			
	Preintervention	Postintervention	Mean difference
Experimental	35.4 (95% CI, 33.3-37.4)	38.8 (95% CI, 36.6-41.1)	3.5 (95% CI, 2.4, 4.6)
Control	36.2 (95% CI, 34.3-38.2)	35.9 (95% CI, 33.7-38.0)	-0.3 (95% CI, -0.4, 1.2
PPTs			
	Preintervention	Postintervention	Mean difference
Experimental	0.8 (95% CI, 0.6-0.9)	0.9 (95% CI, 0.7-1.0)	0.1 (95% CI, 0, 0.2)
Control	0.8 (95% CI, 0.7-0.9)	0.7 (95% CI, 0.5-0.9)	-0.1 (95% CI, -0.2, 0.1

Gapping of the lumbar zygapophysial joint during HVLA manipulation

- Gregory D. Cramer et al in a RCT study in 2002 demonstrated increased separation (gapping) of the lumbar "z" joints in a side posture position during a HVLA manipulation
- Cramer G et al, Spine Volume 27, Number 22, 2002, p.2459

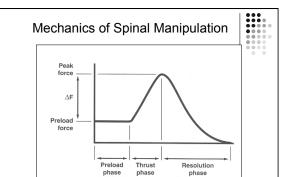
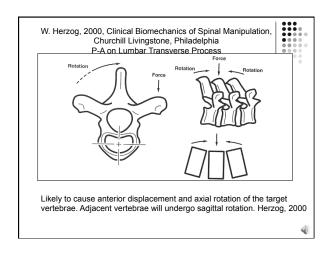
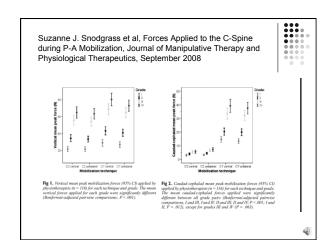
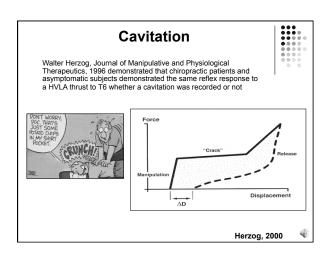

Cramer G et al, Spine Volume 27, Number 22, 2002, p.2459


Table 5. Summary of Gapping Differences* by Z Joint


Z Joint	Group 1 mm (SD)	Group 2 mm (SD)	Group 3 mm (SD)	Group 4 mm (SD)
L L3-L4	0.80 (0.66)	0.15 (0.65)	1.03 (1.17)	0.06 (0.43)
L L4-L5	0.96 (0.95)	0.15 (0.46)	1.51 (1.31)	-0.08(0.56)
L L5-S1	1.04 (0.92)	-0.27(0.51)	1.41 (0.85)	-0.02(0.49)
Ave Diff L (SD)	0.93 (0.84)	0.01 (0.57)	1.32 (1.12)	-0.01(0.49)
R L3-L4	-0.64(1.27)	0.22 (0.45)	-0.80 (1.12)	-0.12(0.49)
R L4-L5	-0.52(1.03)	-0.05 (0.60)	-0.97 (1.37)	-0.09(0.62)
R L5-S1	-1.07 (1.42)	-0.20(0.48)	-0.90 (1.30)	-0.09(0.51)
Ave Diff R (SD)	-0.74 (1.24)	-0.01 (0.51)	-0.89 (1.23)	-0.10 (0.52)


^{*} Measurement from second MRI minus measurement from first MRI.



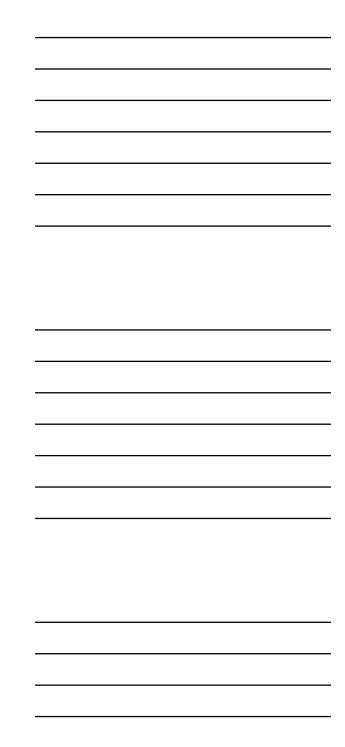
Schematic of force-time history of Spinal manipulation treatment and selected definitions of force parameters Herzog, 2000

Cavitation

- Timothy Flynn et al, Journal of Manipulative and Physiological Therapeutics, 2006 demonstrated that a perceived audible pop many not be relate to improved outcomes from HVLA thrust
- JK Ross et al, Spine, 2004 demonstrated that the cavitation and location to the HVLA thrust did not always correlate (only 50% of the time in the lumbar region)

HYPOTHESES:

Suggested Effects of Manipulation


Neurophysiological:

- · alter muscle reactivity
 - segmental
 - distant
- · pain spinal gating
- · segmental facilitation
- · indirectly effect mobility

through:

- articular receptors
- muscle spindle
- GTO
- sympathetic nervous system
- proprioception

Descending Pain Inhibitory Systems (DPIS) (Wright A., 1995) Dorsal/Lateral Analgesia (non-opioid) PAG Sympathoexcitation Immediate Movement Defence Stimulus D Ventrolateral Analgesia (opioid) Sympathoinhibition PAG Delayed Immobility Recuperation

Spinal Mobilization/Manipulation Produces Immediate Hypoalgesia

- •••
- Sterling et al, 2001a, 2001b
- Vicenzino et al,1995a, 1995b, 1996, 1998,2000
- Vernon et al, 1984,1990
- Fernandez-De-Las-Penas et al, 2007

Immediate Effects on Pressure Pain Threshold Following a Single Cervical Spinal Manipulation in Healthy Subjects – Fernandez-De-Las-Penas et al, JOSPT, 2007

Preintervention	Postintervention	Preintervention-Postintervention Differences
2.1 ± 0.5	2.9 ± 0.6	0.8 (0.5/1)
2.2 ± 0.5	2.8 ± 0.6	0.5 (0.3/0.8)
2.3 ± 0.4	2.3 ± 0.5	0.003 (-0.04/0.01)
2.3 ± 0.5	2.3 ± 0.6	0.006 (-0.08/0.07)
2.2 ± 0.5	2.2 ± 0.4	0.003 (-0.01/0.01)
2.3 ± 0.5	2.3 ± 0.5	0.005 (-0.01/0.02)
	21 ± 0.5 22 ± 0.5 2.3 ± 0.4 2.3 ± 0.5 2.2 ± 0.5	21±05 29±06 22±05 28±06 23±04 23±05 23±05 23±06 22±05 22±04

Altered Muscle Activity and Segmental Facilitation

- •••
- Ferreira et al, Manual Therapy, 2007
- Grindstaff et al, Manual Therapy, 2009
- Lehman et al, Clinical Biomechanics, 2001
- Sung et al, Spine, 2005

Spinal Manipulation causes variable spine kinematic and trunk muscle electromyograhphy responses (Lehman et al Clinical Biomechanics, 2001)

RIODURING STANDING

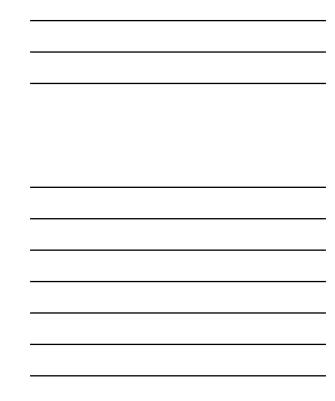
Fig. 1. Right internal oblique EMG activity during quiet stance before and after manipulation in acute low back pain patient. Manipulation reduced the activity in this muscle (considered a spasm) by 41%.

decrease in EMG amplitude

Other Researched Neurophysiological Effects

SNS system

generalized excitatory response


- > skin temperature
- mechanical pain thresholds

CNS system

- > H reflex
- > proprioception
- > endorphins
- immune system response

H- Reflex and Motor Evoked Potentials

- Mazzocchio et al, J Spinal Disorder, 2000
- Dishman and Burke, Spine J, 2003
- Suter, McMorland and Herzog, J Manipulative Physiol Ther, 2005
- Dishman et al, J Manipulative Physiol Ther, 2008

Proprioception

- Heikkila et al. Manual Therapy, 2000
- Strunk et al. Journal of Chiropractic Medicine, 2009
- Smith et al. International Journal of Osteopathic Medicine, 2008

Summary of Researched Effects

- The overall literature on the effects of manipulation range from weak to moderately strong
- Clinical expertise in manipulation is helping to inform and guide the current research related to the effects of manipulation

Efficacy of <u>Lumbar</u> Spine Manipulation

Difficulties:

- many poorly designed
- use of manipulation vs manual techniques often unclear

Findings:

- generally more recent, higher quality studies show positive outcome
- especially short term superiority
- · most recent Cochrane Review
 - no evidence that spinal manipulation was superior to other standard treatments for patient's with acute or chronic LBP
- · multimodal treatment superior

Patient profile of those patients that did well with lumbar manipulation:

- acute (< 1 mo)
- · central distribution
- spinal mobility
- SLR > 60
- few neuro signs
- no previous manipulation
- no pending litigation

•••

** these were the inclusion criteria for the positive studies

Indications

Predictors for favourable response in lumbar spine

- 1. No symptoms distal to the knee
- 2. Recent onset of symptoms (<16days)
- 3. Low FABQ score (<19)
- 4. Hypomobilty of the lumbar spine (P/A)
- 5. Hip I.R ROM >35° for at least 1 hip

Fritz et al, JOSPT, 2007

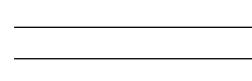
Efficacy of Cervical Spine Manipulation

- not as many studies
- · poorly controlled
- often compared to other modes of manual therapy

Findings

- manipulation is mild to moderately effective in:
 - > decreasing pain
 - > increasing ROM
 - > improving proprioception
 - dizziness
 - > intensity, duration and frequency of CHA
- generally manipulation is not superior to other forms of manual therapy
- better result when combined with exercise

Indications


Predictors for favourable response in cervical spine

- 1. Intermittent neck pain
- 2. Neck pain <30 days
- 3. Work status
- 4. No prior history of neck pain
- 5. Higher education
- 6. Expectation that the treatment would be helpful

Rubinstein et al, Spine, 2007

AV

•	4	Þ	1	Þ					
•		Þ	•	Þ	0	Þ			
•	4	Þ	0	Þ	4	Þ	0	Þ	
	4	Þ	4	Þ	0	þ			
ė	4	b	Ġ	b	d	b	(þ	
ė	4	þ	d	þ					
ò	d	b							

• THANK YOU FOR LISTENING!!!!!!

jsadi2@uwo.ca

References

- Carol Kennedy FCAMT, Beverly Padfield FCAMT, Lenerdene Levesque power point slides

- Carol Kennedy FCAMT, Beverly Padfield FCAMT, Lenerdene Levesque power point slides
 Julie M. Fritz et al., JOSPT, June 2007
 Sidney M. Rubenstein et al, Spine, Oct. 2007
 W. Herzog, 2000. Clinical Biomechanics of Spinal Manipulation, Churchill Livingstone, Philadelphia
 W. Herzog, 1996. "On sounds and reflexes", Journal of Manipulative and Physiological Therapeutics, 19 (3):216-218
 Rachel Martinez-Segura et al., Journal of Manipulative and Physiological Therapeutics, Sept. 2006
 Timothy Flynn et al, "The audible pop from HVLA thrust manipulation and outcome in individuals with low back pain", Journal of Manipulative and Physiological Therapeutics, January, 2006
 JK Ross et al, "Determining cavitation location during lumbar and thoracic spine manipulation". Spine, 2004
 Lehman & McGill, Clinical Biomechanics, 2000
 Christopher J. Colloca et al, Biomechanics, 0ct.2005
 Yuh Liang Tseng et et al, Manual Therapy, 2006
 Sung P.S et al, Spine, 2005
 Anthony Wright, "Hypoalgesia post-manipulation: a review". Manual Therapy, 1995

References

- Sterling et al, Cervical mobilization: concurrent effects on pain, sympathetic nervous system activity and motor activity, Manual Therapy 2001a;6:72-81
- Heikkila et al, Manual Therapy, 2000
- Strunk et al, Journal of Chiropractic Medicine, 2009
- Smith et al, International Journal of Osteopathic Medicine, 2008
- Mazzocchio et al, J Spinal Disorder, 2000
- Dishman and Burke, Spine J, 2003
- Suter, McMorland and Herzog, J Manipulative Physiol Ther, 2005
- Dishman et al, J Manipulative Physiol Ther, 2008
- Ferreira et al, Manual Therapy, 2007
- Grindstaff et al, Manual Therapy, 2009
- Suzanne J. Snodgrass et al, Journal of Manipulative Therapy and Physiological Therapeutics, September 2008
- Herzog et al,Forces exerted during spinal manipulative therapy, Spine, Vol. 18, number 9, 1993

References

- Portney and Watkins 3rd edition, Foundations of Clinical Research: Application to Practice
 C. Fernandez-de-las Penas et al, International Journal of Osteopathic Medicine 8 ,2005
- Pilar Mansilla-Ferragut et al, Journal of Manipulative and Physiological Therapeutics, February 2009
 Cramer G et al, Spine Volume 27, Number 22, 2002, p.2459
- Sterling et al, 2001a, 2001b
- Vicenzino et al, 1995a, 1995b, 1996
 Fernandez-De-Las-Penas et al, 2007